Abstract

BackgroundBased on previous studies, it was suspected that the mitochondrial rns gene within the Ophiostomatales is rich in introns. This study focused on a collection of strains representing Ophiostoma piliferum, Ophiostoma pluriannulatum and related species that cause blue-stain; these fungi colonize the sapwood of trees and impart a dark stain. This reduces the value of the lumber. The goal was to examine the mtDNA rns intron landscape for these important blue stain fungi in order to facilitate future annotation of mitochondrial genomes (mtDNA) and to potentially identify mtDNA introns that can encode homing endonucleases which may have applications in biotechnology.ResultsComparative sequence analysis identified five intron insertion sites among the ophiostomatoid fungi examined. Positions mS379 and mS952 harbor group II introns, the mS379 intron encodes a reverse transcriptase, and the mS952 intron encodes a potential homing endonuclease. Positions mS569, mS1224, and mS1247 have group I introns inserted and these encode intact or eroded homing endonuclease open reading frames (ORF). Phylogenetic analysis of the intron ORFs showed that they can be found in the same insertion site in closely and distantly related species.ConclusionsBased on the molecular markers examined (rDNA internal transcribed spacers and rns introns), strains representing O. pilifera, O. pluriannulatum and Ophiostoma novae-zelandiae could not be resolved. Phylogenetic studies suggest that introns are gained and lost and that horizontal transfer could explain the presence of related intron in distantly related fungi. With regard to the mS379 group II intron, this study shows that mitochondrial group II introns and their reverse transcriptases may also follow the life cycle previously proposed for group I introns and their homing endonucleases. This consists of intron invasion, decay of intron ORF, loss of intron, and possible reinvasion.Electronic supplementary materialThe online version of this article (doi:10.1186/s40064-016-3076-6) contains supplementary material, which is available to authorized users.

Highlights

  • Based on previous studies, it was suspected that the mitochondrial rns gene within the Ophiostomatales is rich in introns

  • Homing endonucleases (HEs) are DNA-cutting enzymes encoded by homing endonuclease genes (HEGs) and these are frequently encountered as open reading frames (ORF) within groups I (GI) introns and in some instances within GII introns (Toor and Zimmerly 2002; reviewed in Hafez and Hausner 2012)

  • Introns within the mtDNA rns gene A polymerase chain reaction (PCR)-based survey revealed polymorphism with regard to the size of the rns gene among the strains of Ophiostoma examined in this study

Read more

Summary

Introduction

It was suspected that the mitochondrial rns gene within the Ophiostomatales is rich in introns. This study focused on a collection of strains representing Ophiostoma piliferum, Ophiostoma pluriannulatum and related species that cause blue-stain; these fungi colonize the sapwood of trees and impart a dark stain. Splicing of groups I (GI) and II (GII) introns tend to be facilitated by a combination of intron-encoded (maturases) or host genome-encoded factors (Lang et al 2007; Hausner 2012). Some of these introns have the potential to be mobile due to the presence of intron-encoded proteins (IEPs) that promote the movement of their host introns from intron-containing alleles to cognate alleles that lack the intron (Dujon 1989). Their naming is based on conserved amino acid motifs: the LAGLIDADG, H–N–H, His-Cys box, PD-(D/E)xK, EDxHD, and GIY-YIG families of HEs (Stoddard 2011, 2014)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.