Abstract

Nitric oxide and related nitrogen species (reactive nitrogen species) now occupy a central position in contemporary medicine, physiology, biochemistry, and microbiology. In particular, NO plays important antimicrobial defenses in innate immunity but microbes have evolved intricate NO-sensing and defense mechanisms that are the subjects of a vast literature. Unfortunately, the burgeoning NO literature has not always been accompanied by an understanding of the intricacies and complexities of this radical and other reactive nitrogen species so that there exists confusion and vagueness about which one or more species exert the reported biological effects. The biological chemistry of NO and derived/related molecules is complex, due to multiple species that can be generated from NO in biological milieu and numerous possible reaction targets. Moreover, the fate and disposition of NO is always a function of its biological environment, which can vary significantly even within a single cell. In this review, we consider newer aspects of the literature but, most importantly, consider the underlying chemistry and draw attention to the distinctiveness of NO and its chemical cousins, nitrosonium (NO(+)), nitroxyl (NO(-), HNO), peroxynitrite (ONOO(-)), nitrite (NO(2)(-)), and nitrogen dioxide (NO(2)). All these species are reported to be generated in biological systems from initial formation of NO (from nitrite, NO synthases, or other sources) or its provision in biological experiments (typically from NO gas, S-nitrosothiols, or NO donor compounds). The major targets of NO and nitrosative damage (metal centers, thiols, and others) are reviewed and emphasis is given to newer "-omic" methods of unraveling the complex repercussions of NO and nitrogen oxide assaults. Microbial defense mechanisms, many of which are critical for pathogenicity, include the activities of hemoglobins that enzymically detoxify NO (to nitrate) and NO reductases and repair mechanisms (e.g., those that reverse S-nitrosothiol formation). Microbial resistance to these stresses is generally inducible and many diverse transcriptional regulators are involved-some that are secondary sensors (such as Fnr) and those that are "dedicated" (such as NorR, NsrR, NssR) in that their physiological function appears to be detecting primarily NO and then regulating expression of genes that encode enzymes with NO as a substrate. Although generally harmful, evidence is accumulating that NO may have beneficial effects, as in the case of the squid-Vibrio light-organ symbiosis, where NO serves as a signal, antioxidant, and specificity determinant. Progress in this area will require a thorough understanding not only of the biology but also of the underlying chemical principles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call