Abstract

Tropical reefs shelter one quarter to one third of all marine species but one third of the coral species that construct reefs are now at risk of extinction. Because traditional methods for assessing reef diversity are extremely time consuming, taxonomic expertise for many groups is lacking, and marine organisms are thought to be less vulnerable to extinction, most discussions of reef conservation focus on maintenance of ecosystem services rather than biodiversity loss. In this study involving the three major oceans with reef growth, we provide new biodiversity estimates based on quantitative sampling and DNA barcoding. We focus on crustaceans, which are the second most diverse group of marine metazoans. We show exceptionally high numbers of crustacean species associated with coral reefs relative to sampling effort (525 species from a combined, globally distributed sample area of 6.3 m2). The high prevalence of rare species (38% encountered only once), the low level of spatial overlap (81% found in only one locality) and the biogeographic patterns of diversity detected (Indo-West Pacific>Central Pacific>Caribbean) are consistent with results from traditional survey methods, making this approach a reliable and efficient method for assessing and monitoring biodiversity. The finding of such large numbers of species in a small total area suggests that coral reef diversity is seriously under-detected using traditional survey methods, and by implication, underestimated.

Highlights

  • Reef species diversity has been estimated at,600,000 to more than 9 million species worldwide [1,2,3] This diversity is concentrated in the central Indo-Pacific [4], and decreases with increasing distance from the IndoAustralian archipelago

  • The limitations of these methods are obvious: the results are not comparable from site to site because the sampling effort is not quantifiable, the number of specimens processed is limited by a very time-consuming approach that depends on the availability of taxonomic expertise, and cryptic species are not detected leading to underestimation of the real biodiversity

  • This threshold generally corresponds with boundaries between morphologically defined species in crustaceans [19] and is located on a plateau where the numbers of operational taxonomic units (OTUs) are relatively insensitive to the precise cut-off value chosen [12]; this insensitivity suggests that most of the Nature of sample

Read more

Summary

Introduction

Reef species diversity has been estimated at ,600,000 to more than 9 million species worldwide [1,2,3] This diversity is concentrated in the central Indo-Pacific [4] (the ‘‘Coral Triangle’’), and decreases with increasing distance from the IndoAustralian archipelago. Inventory data on small organisms collected to assess coral reef diversity largely consist of taxonomic identifications of collected material through non-standardized sampling strategies. The limitations of these methods are obvious: the results are not comparable from site to site because the sampling effort is not quantifiable, the number of specimens processed is limited by a very time-consuming approach that depends on the availability of taxonomic expertise, and cryptic species are not detected leading to underestimation of the real biodiversity

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.