Abstract

Simple SummaryThe insect Dryocosmus kuriphilus induces galls on chestnut trees. Torymus sinensis is a host-specific parasitoid of D. kuriphilus and phenologically synchronizes with D. kuriphilus. The aim of this research is to investigate the bacterial communities and predominant bacteria of D. kuriphilus, T. sinensis, D. kuriphilus galls and the galled twigs of Castanea mollissima. We provide the first evidence that D. kuriphilus shares most bacterial species with T. sinensis, D. kuriphilus galls and galled twigs. The predominant bacteria of D. kuriphilus are Serratia sp. and Pseudomonas sp. Many species of the Serratia and Pseudomonas genera are plant pathogenic bacteria, and we suggest that D. kuriphilus may be a potential vector of plant pathogens. Furthermore, a total of 111 bacteria are common to D. kuriphilus adults, T. sinensis, D. kuriphilus galls and galled twigs, and we suggest that the bacteria may transmit horizontally among D. kuriphilus, T. sinensis, D. kuriphilus galls and galled twigs on the basis of their ecological associations.Dryocosmus kuriphilus (Hymenoptera: Cynipidae) induces galls on chestnut trees, which results in massive yield losses worldwide. Torymus sinensis (Hymenoptera: Torymidae) is a host-specific parasitoid that phenologically synchronizes with D. kuriphilus. Bacteria play important roles in the life cycle of galling insects. The aim of this research is to investigate the bacterial communities and predominant bacteria of D. kuriphilus, T. sinensis, D. kuriphilus galls and the galled twigs of Castanea mollissima. We sequenced the V5–V7 region of the bacterial 16S ribosomal RNA in D. kuriphilus, T. sinensis, D. kuriphilus galls and galled twigs using high-throughput sequencing for the first time. We provide the first evidence that D. kuriphilus shares most bacterial species with T. sinensis, D. kuriphilus galls and galled twigs. The predominant bacteria of D. kuriphilus are Serratia sp. and Pseudomonas sp. Furthermore, the bacterial community structures of D. kuriphilus and T. sinensis clearly differ from those of the other groups. Many species of the Serratia and Pseudomonas genera are plant pathogenic bacteria, and we suggest that D. kuriphilus may be a potential vector of plant pathogens. Furthermore, a total of 111 bacteria are common to D. kuriphilus adults, T. sinensis, D. kuriphilus galls and galled twigs, and we suggest that the bacteria may transmit horizontally among D. kuriphilus, T. sinensis, D. kuriphilus galls and galled twigs on the basis of their ecological associations.

Highlights

  • Plant galls are outgrowths of plant tissues induced by a wide variety of organisms, including protists, nematodes, mites, fungi, bacteria and insects [1]

  • A total of 14 phyla, 20 classes, 63 orders, 103 families, 181 genera, 273 species and 373 Operational Taxonomic Units (OTU) were identified in the bacterial communities of D. kuriphilus, T. sinensis, D. kuriphilus galls and galled twigs (Table 1)

  • D. kuriphilus and T. sinensis clearly differed from those of the other groups (Figure 1). These results suggest that D. kuriphilus adults, T. sinensis, D. kuriphilus galls and galled twigs may provide a unique habit for their own bacterial community

Read more

Summary

Introduction

Plant galls are outgrowths of plant tissues induced by a wide variety of organisms, including protists, nematodes, mites, fungi, bacteria and insects [1]. Galling insects manipulate the development of host plants and induce galls on different organs of the host plants [2]. Galling insects are a highly sophisticated herbivore group, including gall wasps, gall midges, gall aphids, gall moths, thrips and psyllids [3]. The gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae) is native to China and has rapidly spread throughout Asia, Europe and North America [4,5]. Galls are the sole food sources for D. kuriphilus [7,8]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.