Abstract

Glaciers, which constitute the world's largest global freshwater reservoir, are also natural microbial repositories. The frequent pandemic in recent years underscored the potential biosafety risks associated with the release of microorganisms from the accelerated melting of glaciers due to global warming. However, the characteristics of pathogenic microorganisms in glaciers are not well understood. The glacier surface is the primary area where glacier melting occurs that is often the main subject of research on the dynamics of pathogenic microbial communities in efforts to assess glacier biosafety risks and devise preventive measures. In this study, high-throughput sequencing and quantitative polymerase chain reaction methods were employed in analyses of the composition and quantities of potential pathogenic bacteria on the surfaces of glaciers in the southeastern Tibetan Plateau. The study identified 441 potential pathogenic species ranging from 215 to 4.39 × 1011 copies/g, with notable seasonal and environmental variations being found in the composition and quantity of potential pathogens. The highest level of diversity was observed in April and snow, while the highest quantities were observed in October and cryoconite. Host analysis revealed that >70 % of the species were pathogens affecting animals, with the highest proportion of zoonotic pathogens being observed in April. Analysis of aerosols and glacial meltwater dispersion suggested that these microbes originated from West Asia, primarily affecting the central and southern regions of China. Null model analysis indicated that the assembly of potential pathogenic microbial communities on glacier surfaces was largely governed by deterministic processes. In conclusion, potential pathogenic bacteria on glacier surfaces mainly originated from the snow and exhibited significant temporal and spatial variation patterns. These findings can be used to enhance researchers' ability to predict potential biosafety risks associated with pathogenic bacteria in glaciers and to prevent their negative impact on populations and ecological systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call