Abstract

Algae have adopted two primary strategies to maximize the performance of Rubisco in photosynthetic CO2fixation. This has included either the development of a CO2-concentrating mechanism (CCM), based at the level of the chloroplast, or the evolution of the kinetic properties of Rubisco. This review examines the potential diversity of both Rubisco and chloroplast-based CCMs across algal divisions, including both green and nongreen algae, and seeks to highlight recent advances in our understanding of the area and future areas for research. Overall, the available data show that Rubisco enzymes from algae have evolved a higher affinity for CO2when the algae have adopted a strategy for CO2fixation that does not utilise a CCM. This appears to be true of both Green and Red Form I Rubisco enzymes found in green and nongreen algae, respectively. However, the Red Form I Rubisco enzymes present in nongreen algae appear to have reduced oxygenase potential at air level of O2. This has resulted in a photosynthetic physiology with a reduced potential to be inhibited by O2and a reduced need to deal with photorespiration. In the limited number of microalgae that have been examined, there is a strong correlation between the existence of a high-affinity CCM physiology and the presence of pyrenoids in all algae, highlighting the potential importance of these chloroplast Rubisco-containing bodies. However, in macroalgae, there is greater diversity in the apparent relationships between pyrenoids and chloroplast features and the CCM physiology that the species shows. There are many examples of microalgae and macroalgae with variations in the presence and absence of pyrenoids as well as single and multiple chloroplasts per cell. This occurs in both green and nongreen algae and should provide ample material for extending studies in this area. Future research into the function of the pyrenoid and other chloroplast features, such as thylakoids, in the operation of a chloroplast-based CCM needs to be addressed in a diverse range of algal species. This should be approached together with assessment of the coevolution of Rubisco, particularly the evolution of Red Form I Rubisco enzymes, which appear to achieve superior kinetic characteristics when compared with the Rubisco of C3higher plants, which are derived from green algal ancestors.Key words: Rubisco, CO2-concentrating mechanism, carbonic anhydrase, aquatic photosynthesis, algae, pyrenoids, inorganic carbon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.