Abstract

Osteoblasts are the only cells that can give rise to bones in vertebrates. Thus, one of the most important functions of these metabolically active cells is mineralized matrix production. Because osteoblasts have a limited lifespan, they must be constantly replenished by preosteoblasts, their immediate precursors. Because disruption of the regulation of bone-forming osteoblasts results in a variety of bone diseases, a better understanding of the origin of these cells by defining the mechanisms of bone development, remodeling, and regeneration is central to the development of novel therapeutic approaches. In recent years, substantial new insights into the origin of osteoblasts-largely owing to rapid technological advances in murine lineage-tracing approaches and other single-cell technologies-have been obtained. Collectively, these findings indicate that osteoblasts involved in bone formation under various physiological, pathological, and therapeutic conditions can be obtained from numerous sources. The origins of osteoblasts include, but are not limited to, chondrocytes in the growth plate, stromal cells in the bone marrow, quiescent bone-lining cells on the bone surface, and specialized fibroblasts in the craniofacial structures, such as sutures and periodontal ligaments. Because osteoblasts can be generated from local cellular sources, bones can flexibly respond to regenerative and anabolic cues. However, whether osteoblasts derived from different cellular sources have distinct functions remains to be investigated. Currently, we are at the initial stage to aptly unravel the incredible diversity of the origins of bone-forming osteoblasts. © 2021 American Society for Bone and Mineral Research (ASBMR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.