Abstract
Mycobacterial genomes contain large sets of loci encoding membrane proteins that belong to a family of multidrug resistance pumps designated Resistance-Nodulation-Cell Division (RND) permeases. Mycobacterial membrane protein Large (MmpL) transporters represent a subclass of RND transporters known to participate in the export of lipid components across the cell envelope. These surface-exposed lipids with unusual structures play key roles in the physiology of mycobacteria and/or can act as virulence factors and immunomodulators. Defining the substrate specificity of MmpLs and their mechanisms of regulation helps understanding how mycobacteria elaborate their complex cell wall. This review describes the diversity of MmpL proteins in mycobacteria, emphasising their high abundance in a few opportunistic rapid-growing mycobacteria. It reports the conservation of mmpL loci between Mycobacterium tuberculosis and non-tuberculous mycobacteria, useful in predicting the role of MmpLs with unknown functions. Paradoxically, whereas MmpLs participate in drug resistance mechanisms, they represent also attractive pharmacological targets, opening the way for exciting translational applications. The most recent advances regarding structural/functional information are also provided to explain the molecular basis underlying the proton-motive force driven lipid transport. Overall, this review emphasises the Janus-face nature of MmpLs at the crossroads between antibiotic resistance mechanisms and exquisite vulnerability to drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.