Abstract

Nonpathogenic bacteria are taken up by host cells into vacuoles or phagosomes that are processed through the endocytic pathway, through which the vacuoles mature and fuse to the lysosomes, in which the bacteria are degraded. To avoid this fate within phagocytic cells, intracellular pathogens have evolved different strategies to survive and evade phagosome–lysosome fusion [1]. Understanding the mechanisms by which pathogens manipulate vesicle trafficking in different hosts is extremely important for understanding the ability of various pathogens to cause disease and is essential for designing novel and effective strategies for prevention and therapeutic intervention. Francisella tularensis is a gram-negative, highly infectious, facultative intracellular bacterium that causes the zoonotic disease tularemia. The genus Francisella contains five species: F. tularensis, F. philomiragia, F. hispaniensis, F. noatunensis, and F. novicida [2,3]. Two subspecies of F. tularensis, tularensis (Type A) and holarctica (Type B), cause most cases of the illness in humans. F. novicida causes disease only in immunocompromised persons, but is highly virulent in mice [3]. However, it is important to note that in comparison to F. tularensis subsp. tularensis and F. tularensis subsp. holarctica, F. novicida elicits a different immune response in the host [2]. Humans acquire infection by several routes, including direct contact with infected animals, ingestion of water or food contaminated by infected animals, exposure to infected arthropod vectors, or by inhalation of infective aerosols, resulting in pneumonic, oropharyngeal, glandular, ulceroglandular, or oculoglandular tularemia [4]. Considering the ease of dissemination and high infectivity, F. tularensis subsp. tularensis and F. tularensis subsp. holarctica have been classified by the Centers for Disease Control and Prevention (CDC) as Tier 1 select agents. The existence of Francisella in the environment is divided into two cycles: the terrestrial cycle and aquatic cycle [5]. Small rodents, hares, and arthropods play a major role in the terrestrial cycle, while rodents associated with water are important in the water cycle [4,5]. Organisms such as ticks, flies, and mosquitoes are considered vectors of tularemia transmission to mammals [6]. Although it causes disease in various animal species, no animal has been identified as a main reservoir of this pathogen. F. tularensis subsp. holarctica and F. novicida have a strong association with freshwater environments, free-living amoeba, and biofilms [7,8]. Since mosquito larvae can feed on aquatic protozoa, they may be infected with F. tularensis during development in their natural aquatic environment [7]. The effect of wars, natural disasters, climate change, and global warming will probably have an impact on increased incidences of tularemia [9].

Highlights

  • OPEN ACCESSWithin mammalian and arthropod-derived cells, F. tularensis transiently resides within an acidic vacuole prior to escaping to the cytosol, where the bacteria replicate

  • Nonpathogenic bacteria are taken up by host cells into vacuoles or phagosomes that are processed through the endocytic pathway, through which the vacuoles mature and fuse to the lysosomes, in which the bacteria are degraded

  • The ability to invade and replicate in a variety of host cells appears to be a major feature of the ecology and epidemiology of F. tularensis

Read more

Summary

OPEN ACCESS

Within mammalian and arthropod-derived cells, F. tularensis transiently resides within an acidic vacuole prior to escaping to the cytosol, where the bacteria replicate. F. tularensis resides and replicates within non-acidified, membrane-bound vacuoles within the trophozoites of amoebae. The Francisella pathogenicity island (FPI) genes encode a type VI Secretion System (T6SS), which is indispensable for phagosomal escape of F. tularensis within mammalian and arthropod cells and for intravacuolar growth within amoeba. We discuss the divergent F. tularensis intracellular lifestyle in different hosts and its role in pathogenic evolution and intracellular proliferation within diverse hosts

Introduction
Conclusions and Future Directions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call