Abstract

A well-known fact is that there exists $g\in L^{\infty}(\mathbf{T}^{2})$ with zero integral, such that the equation \begin{equation} div f=g \tag{$\ast$} \end{equation} has no solution $f=(f_{1},f_{2})\in W^{1,\infty}(\mathbf{T}^{2})$. This was proved by Preiss (1997), using an involved geometric argument, and, independently, by McMullen (1998), via Ornstein's non-inequality. We improve this result: roughly speaking, we prove that, there exists $g\in L^{\infty}$ for which ($\ast$) has no solution such that $% \partial_{2}f_{2}\in L^{\infty}$ and $f$ is slightly better than $L^{1}$. Our proof relies on Riesz products in the spirit of the approach of Wojciechowski (1998) for the study of ($\ast$) with source $g\in L^{1}$. The proof we give is elementary, self-contained and completely avoids the use of Ornstein's non-inequality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.