Abstract

BackgroundThe processes of tumor growth and circadian rhythm are intimately intertwined; thus, rewiring circadian metabolism by time-restricted feeding (TRF) may contribute to delaying carcinogenesis. However, research on the effect of a TRF cellular regimen on cancer is lacking. ObjectiveInvestigate the circadian signatures of TRF in lung cancer in vitro. MethodsWe first developed a cellular paradigm mimicking in vivo TRF and collected cells for transcriptome analysis. We further confirmed the effect on tumor cells upon 6-h TRF-mimicking (6-h TRFM) by real-time PCR, Lumicycle experiments, CCK-8, and flow cytometry assays. ResultsWe found that A549 lung adenocarcinoma cells treated with 6-h TRFM conditions displayed robust diurnal rhythms of transcriptomes, as well as modulation of the core clock genes relative to other different cellular regimens used in this study, including the fasting-mimicking conditions (ie, short-term starvation) and the serum-free regime. Notably, pathway analysis of oscillating genes exclusively in 6-h TRFM showed that some circadian genes were enriched in tumor-related pathways, such as the oxytocin signaling pathway, HIF-1 signaling pathway, and pentose and glucuronate interconversions. Moreover, in line with the circadian pathway enrichment results, 6-h TRFM robustly inhibited cell proliferation and induced cell apoptosis and cell cycle arrest in lung adenocarcinoma A549 cells, lung adenocarcinoma H460 cells, esophageal carcinoma Eca-109 cells, and breast adenocarcinoma MCF-7 cells. ConclusionsOur findings provide the first in vitro mimicking medium for TRF intervention and indicate that 6-h TRFM is sufficient to reprogram the circadian signatures of lung adenocarcinoma cells and inhibit the progression of multiple tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call