Abstract

This paper analyzes the diurnal temperature range (DTR) over land in simulations of the recent past and in future projections by 20 models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5). The annually averaged DTR is evaluated for the present-day climate using two gridded datasets (HadGHCND and CRU). The DTR varies substantially between different CMIP5 models, particularly in the subtropics, and is generally underestimated. In future projections of the high emission scenario RCP8.5, the models disagree on both the sign and the magnitude of the change in DTR. Still, a majority of the models project a globally averaged reduction in the DTR, with an increase over Europe, a decrease over the Sahara desert and a substantial decrease in DTR at high latitudes in winter. The general DTR reduction is partly linked to the enhancement of the downwelling clear sky longwave radiation due to greenhouse gases. At high latitudes in winter, the decrease in DTR seems to be enforced by an increase in cloudiness, but in most other regions counteracted by decreases in cloud fraction. Changes in the hydrological cycle and in the clear sky shortwave radiation also impact the DTR. The DTR integrates many processes and neither the model differences in the DTR nor in the change in DTR can be attributed to a single parameter. Which variables that impact the model discrepancies vary both regionally and seasonally. However, clouds seem to matter in most regions and seasons and the evaporative fraction is important in summer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call