Abstract

Abstract The structure of the diurnal cycle of warm-season precipitation and its associated fields during the North American monsoon are examined for the core monsoon region and for the southwestern United States, using a diverse set of observations, analyses, and forecasts from the North American Monsoon Experiment field campaign of 2004. Included are rain gauge and satellite estimates of precipitation, Eta Model forecasts, and the North American Regional Reanalysis (NARR). Daily rain rates are of about the same magnitude in all datasets with the exception of the Climate Prediction Center (CPC) Morphing (CMORPH) technique, which exhibits markedly higher precipitation values. The diurnal cycle of precipitation within the core region occurs earlier in the day at higher topographic elevations, evolving with a westward shift of the maximum. This shift appears in the observations, reanalysis, and, while less pronounced, in the model forecasts. Examination of some of the fields associated with this cycle, including convective available potential energy (CAPE), convective inhibition (CIN), and moisture flux convergence (MFC), reveals that the westward shift appears in all of them, but more prominently in the latter. In general, warm-season precipitation in southern Arizona and parts of New Mexico shows a strong effect due to northward moisture surges from the Gulf of California. A reported positive bias in the NARR northward winds over the Gulf of California limits their use with confidence for studies of the moist surges along the Gulf; thus, the analysis is complemented with operational analysis and the Eta Model short-term simulations. The nonsurge diurnal cycle of precipitation lags the CAPE maximum by 6 h and is simultaneous with a minimum of CIN, while the moisture flux remains divergent throughout the day. During surges, CAPE and CIN have modifications only to the amplitude of their cycles, but the moisture flux becomes strongly convergent about 6 h before the precipitation maximum, suggesting a stronger role in the development of precipitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call