Abstract
The conformational stability of human epidermal growth factor (EGF) and the structure of denatured EGF were investigated using the technique of disulfide scrambling. Under denaturing conditions and in the presence of a thiol catalyst, the native EGF denatures by shuffling its three native disulfide bonds and converts to a mixture of scrambled isomers. Analysis by HPLC reveals that the denatured EGF is composed of about 10 fractions of scrambled isomers. The heterogeneity varies under different denaturing conditions, with the heat-denatured samples exhibiting the highest degree of heterogeneity. The disulfide structures of eight major scrambled isomers of EGF were determined. The most predominant isomer adopts the bead-form structure with disulfide bonds bridged by three pairs of neighboring cysteines: Cys6-Cys14, Cys20-Cys31, and Cys33-Cys42. The denaturation curve of EGF is determined by the relative yield of the scrambled and native species of EGF. EGF is a highly stable molecule and can be effectively denatured only by guanidine chloride at a concentration of greater than 4-5 M. At 8 M urea, less than 16% of the native EGF was denatured. The unusual conformational stability of EGF was compared with that of eight different disulfide proteins that were similarly characterized by the method of disulfide scrambling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.