Abstract

Existing theoretical distributions of wave height and period do not reflect measured joint distributions from field data. A simulation methodology is introduced to retain the essential features of the theoretical background in Gaussian random noise but to avoid further compromising assumptions in the interpretation of height and period in the amplitude domain. A joint distribution can be associated directly with an empirical or measured variance spectrum. Spectral shape appears to dominate the detail of predicted joint distributions. There is generally a much sharper decay in probability levels at higher periods than is predicted by theoretical models. For Jonswap spectra, there is a dominant central ridge and a distinct bimodal structure in the joint distribution, features that are not evident in symmetric Gaussian spectral forms. The wave height distributions for Jonswap spectra differ little from the Rayleigh distribution, except at extreme wave heights where Rayleigh overpredicts. The period distributions are strongly sensitive to spectral shape. In the conditional distribution of periods, given the height, the asymptotic median period at extreme wave heights is significantly longer than the mean period for Jonswap spectra, but not for symmetric Gaussian forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.