Abstract

ABSTRACTThe distribution of hydraulic resistances in xylem throughout the pathway leading to the tomato fruit was investigated. Previous work had indicated that there were large resistances within the supporting sections of this pathway (the peduncle and pedicel), perhaps associated with interruptions in the xylem. These high resistances are believed to impede calcium flux into the fruit and thus impair fruit development. It is shown here that fruit on intact plants do not shrink detectably during drought, even when the drought is sufficient to cause marked shrinkage of leaves and visible wilting of the shoot. In explants, it is possible to induce back‐flow from the fruit into the stem (probably via the xylem) but this flow is small and very slow. These observations support the view that there is a large hydraulic resistance in the pathway between fruit and stem. When pulses of water were made available within explants, by scorching of one leaflet, there was a rapid swelling of leaves and sepals. Such rapid fluxes indicate the presence of strong hydraulic (xylem) connections throughout the pathway between leaf and calyx. This shows that there are no significant hydraulic constrictions in the xylem proximal to the calyx. This finding is contrary to some previous conclusions but it is supported by experiments with dyes which showed continuous, functional xylem throughout the peduncle and pedicel. Calculations show that over 90% of the hydraulic resistance between stem and fruit must reside within the fruit pericarp. Implications for calcium nutrition are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.