Abstract

The microscopic distribution and dynamic state of water in native potato, maize and pea starch granules are investigated with NMR relaxometry and diffusometry. Besides extra-granular water, three water populations can be identified inside native potato starch granules. These are assigned to water in the amorphous growth rings; water in the semi-crystalline lamellae and “channel water”, which is located in the hexagonal channels within the B-type amylopectin crystals. The first two water populations are orientationally disordered and exchange with each other on a millisecond timescale at 290 K. NMR diffusometry shows that the water in packed granule beds is undergoing translational diffusion in a 2-dimensional space, either in thin layers between granules and/or in amorphous growth rings within the granules. The “channel water” is uniquely characterised by a 1 kHz deuterium doublet splitting and is in slow exchange with water in the other compartments on the NMR timescale. In the smaller maize granules all intra-granular water populations are in fast exchange and there is no evidence for “channel water” in the A-type crystal lattice. The NMR water proton and deuterium data for pea starch are consistent with a composite A and B-type crystal structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.