Abstract
AbstractWe consider two tree statistics that extend in a natural way the parameters depth of a node resp. distance between two nodes. The ancestor‐tree of p given nodes in a rooted tree T is the subtree of T, spanned by the root and these p nodes and generalizes the depth (ancestor‐tree of a single node), whereas the spanning subtree induced by p given nodes in a tree T generalizes the distance (induced spanning subtree of two nodes). We study the random variables size of the ancestor‐tree resp. spanning subtree size for two tree families, the simply generated trees and the recursive trees. We will assume here the random tree model and also that all () possibilities of selecting p nodes in a tree of size n are equally likely. For random simply generated trees we can then characterize for a fixed number p of chosen nodes the limiting distribution of both parameters as generalized Gamma distributions, where we prove the convergence of the moments too. For some specific simply generated tree families we can give exact formulæ for the first moments. In the instance of random recursive trees, we will show that the considered parameters are asymptotically normally distributed, where we can give also exact formulæ for the expectation and the variance. © 2004 Wiley Periodicals, Inc. Random Struct. Alg., 2004
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.