Abstract

Owen proposed a method of scrambling ( t, m, s)-nets to eliminate statistical bias while retaining the low discrepancy property. Recently a central limit theorem has been proved for scrambled net quadrature. This article compares the empirical distribution of the square discrepancy of scrambled digital ( t, m, s)-nets with the theoretical asymptotic distribution suggested by the central limit theorem. Furthermore this article discusses the variance and the empirical distribution of the square discrepancy of Owen’s scrambling and a variant, linear scrambling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.