Abstract

The extent of blocking of sieve-plate pores caused by release of cell turgor was investigated by fixing and processing for electron microscopy a long length of celery (Apium graveolens L.) phloem. Differences in distribution of P-protein within the pores were observed between those cells near the two cut ends, and the central cells.To assess the effect of chemical fixation on the distribution of P-protein, strands of celery phloem (fixed or unfixed, and not treated with cryoprotectants) were frozen in Freon 12 and then freeze-substituted. In sieve elements from unfixed tissue there were a greater number of sieve plates displaying partially open pores.Direct freezing of unprotected phloem tissue in Freon 12 resulted in the formation of ice crystals within the lumen of the sieve elements. Freezing of tissue at rates fast enough to avoid the formation of damaging ice crystals resulted in sieve-plate pores having an unoccluded central channel with a peripheral lining of P-protein. In the lumen of the sieve elements the P-protein filaments occurred as discrete bundles ca. 0.5 μm in diameter, and as a parietal layer varying in thickness from 0.1 to 0.5 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call