Abstract

The production of sex pheromone in many moths is regulated by the neuropeptide PBAN (pheromone biosynthesis-activating neuropeptide). Studies in a number of species have shown that pheromone production can be linked to a hemolymph factor and that continuity in the ventral chain of ganglia is not required. However, it has recently been shown that production of pheromone in the gypsy moth, Lymantria dispar, is largely prevented in females with a transected ventral nerve cord (VNC). To begin to understand the cellular basis for this dependence on the VNC, we sought to determine the distribution of PBAN in the central nervous system and its neurohemal sites, including those associated with the VNC. Using an antiserum to L. dispar-PBAN in immunocytochemical methods, we have mapped the distribution of PBAN-like immunoreactivity (PLI). PLI is found in three clusters of ventral midline somata in the subesophageal ganglion (SEG), in three clusters of midline cells in each segmental ganglion, and in bilateral pairs of cells located posterolaterally in each abdominal ganglion. The SEG cells comprise both interneurons, with endings in the neuropil of each segmental ganglion, as well as neurosecretory cells, with endings in the retrocerebral complex and in an unusual neurohemal structure near the anterior aspect of the SEG. The latter structure, which we have named the corpus ventralis, receives axons from the two anterior clusters of cells in the SEG. In the abdominal ganglia, the posterolateral clusters of cells have immunoretroreactive axons exiting the ganglia via the ventral nerves. Endings of these axons reach the perivisceral organ in the next posterior ganglion and pass anteriorly into the median nerve, forming additional varicose endings. We did not detect PLI in the terminal nerve. Thus, our findings raise the possibility that the requirement for an intact VNC in pheromone production reflects a role for descending regulation of neurosecretory cells in the segmental ganglia. Arch. Insect Biochem. Physiol. 34:391–408, 1997. Published 1997 Wiley-Liss, Inc.1

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call