Abstract

Given a skew-symmetric matrix, the corresponding two-player symmetric zero-sum game is defined as follows: one player, the row player, chooses a row and the other player, the column player, chooses a column. The payoff of the row player is given by the corresponding matrix entry, the column player receives the negative of the row player. A randomized strategy is optimal if it guarantees an expected payoff of at least 0 for a player independently of the strategy of the other player. We determine the probability that an optimal strategy randomizes over a given set of actions when the game is drawn from a distribution that satisfies certain regularity conditions. The regularity conditions are quite general and apply to a wide range of natural distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.