Abstract

The primary visual cortex (V1) of primates receives visual signals from cells in the koniocellular (K), magnocellular (M) and parvocellular (P) layers of the lateral geniculate nucleus (LGN). The functional role of the K pathway is unknown, but one proposal is that it modulates visual activity locally via release of nitric oxide (NO). One goal of this study was to examine the distribution of nitric oxide synthetase (NOS), the enzyme that produces NO, using immunocytochemistry for brain NOS (bNOS) or histochemistry for nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase activity in the V1 target cells of the K pathway and within the LGN itself. A second goal was to examine bNOS and NADPH diaphorase activity within proposed functional compartments in the second visual area (V2). We examined the LGN, V1 and V2 in squirrel monkeys, owl monkeys and bushbabies. In V1 and V2, we found that dense neuropil staining for NADPH diaphorase mirrored the pattern of high metabolic activity shown with cytochrome oxidase (CO) staining but did not necessarily mirror the pattern of immunolabeling seen with antibodies against NOS. The smooth stellate cells stained for NADPH diaphorase or bNOS were sparse and did not colocalize with LGN recipient zones in V1 or with the CO compartments in V2. LGN cells projecting to V1, including K, M and P cells, were negative for bNOS and NADPH diaphorase. Therefore, high levels of NOS are not limited to the K pathway. Instead, dense NOS activity is present in interneurons and within the neuropil of V1 and V2 that exhibit high metabolic demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.