Abstract

Sex steroids during the perinatal period are able to modify the postnatal development of neurons within steroid-sensitive areas in the rat brain. This study was designed to test the possible influence of the early postnatal levels of sex steroids on the morphology of the astrocytes. The experimental manipulation of the neonatal levels of sex steroids was performed by the androgenization of females with a single injection of testosterone propionate and by the orchidectomy of males on the day of birth. Control females received a single injection of vehicle and control males were sham operated. All the animals were sacrificed at 3 months of age postnatally. The immunohistochemical distribution of the glial fibrillary acidic protein (GFAP), a marker of astrocytic filaments, was studied on coronal sections of the dorsal hippocampus, the globus pallidus and the hypothalamic arcuate nucleus. The number of GFAP immunoreactive cells, the number of GFAP immunoreactive primary processes per cell and the surface density of the GFAP immunoreactive material were evaluated. This morphometric evaluation revealed a decreased surface density of GFAP immunoreactive material in the hippocampus, globus pallidus and the ventral part of the arcuate nucleus of orchidectomized males when compared to control males. Sex differences in the distribution of GFAP immunoreactivity were detected in the hippocampus and globus pallidus. These differences were abolished by the androgenization of females. The number of GFAP immunoreactive cells was similar in all the experimental groups, indicating that the differences in surface density represent an effect of sex steroids on the growth of astrocytic processes rather than on the proliferation of astrocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call