Abstract

AbstractA result is presented giving conditions on a set of open discs in the complex plane that ensure that a transcendental meromorphic function with Nevanlinna deficient poles omits at most one finite value outside the set of discs. This improves a previous result of Langley, and goes some way towards closing a gap between Langley's result and a theorem of Toppila in which the omitted values considered may include ∞

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.