Abstract
LetK be a compact point set in the complex plane having positive logarithmic capacity and connected complement. For anyf continuous onK and analytic in the interior ofK we investigate the distribution of the extreme points for the error in best uniform approximation tof onK by polynomials. More precisely, if $$A_n (f): = \{ z \in K:|f(z) - p_n^* (f;z)| = \parallel f - p_n^* (f)\parallel _K \} ,$$ wherep n * (f) is the polynomial of degree≤n of best uniform approximation tof onK, we show that there is a subsequencenk with the property that the sequence of (n k +2)-point Fekete subsets of\(A_{n_k }\) has limiting distribution (ask→∞) equal to the equilibrium distribution forK. Analogues for weighted approximation are also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.