Abstract

An investigation of the radial distribution of the counterions of a synthetic rodlike polyelectrolyte in aqueous solution is presented. The cationic polyelectrolyte used here has a poly(p-phenylene) backbone. For typical molecular weights the macroion comprises approximately one persistence length (ca. 20 nm) and effects of finite stiffness may be disregarded. Each repeating unit bears four charges which leads to a charge parameter of xi = 6.65. The distribution of the iodide counterions around this highly charged macroion is studied by small-angle X-ray scattering (SAXS) in dilute aqueous solution. These investigations are supplemented by measurements using anomalous small-angle X-ray scattering (ASAXS) that furnishes additional information about the contrast of the macroion. Data taken at high scattering angles give indication for contributions caused by the longitudinal fluctuations of the counterions. After correction for this effect the experimental results are compared to intensities calculated by use of the Poisson-Boltzmann (PB)-cell model. It is found that the PB-cell model describes the corrected data at intermediate and high scattering angles. Deviations at low scattering angle are attributed to the mutual interaction of the rod-like polyelectrolyte that can be described in terms of an effective structure factor. Data taken at lowest scattering angles point to a weak attraction between the rod-like macroions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.