Abstract

The distribution law of the ground stress field is of great significance in guiding the design of coal mine roadway alignment, determining the parameters of roadway support, and preventing and controlling the impact of ground pressure in coal mines. A geostress inversion method combining Rhino surface modeling and FLAC3D 6.0 numerical simulation software is proposed. Based on the geological data of the coal mine and the results of on-site measurements, a three-dimensional geological model of Yingcheng Coal Mine is established for the geostress inversion, and the distribution law of the geostress field in Yingcheng Coal Mine is obtained. Research shows the following: (1) The horizontal maximum principal stress values of the Yingcheng Mine are between 33.9 and 35.3 MPa, the horizontal minimum principal stress values are between 23.6 and 25.4 MPa, and the direction of the horizontal maximum principal stress is roughly in the southwest to west direction; (2) the three-way principal stress magnitude relationship is σH > σv > σh, indicating that the horizontal stress dominates in the study area, which belongs to the slip-type stress state; (3) The maximum principal stress of No. 3 coal seam is 33.1–34.8 MPa, the middle principal stress is 27.5–29.2 MPa, and the minimum principal stress is 17.3–22.9 MPa. Due to the influence of topography and burial depth, there is a phenomenon of stress concentration in some areas. By comparing the inversion values with the measured values, the accuracy of the geostress inversion is high, and the initial geostress inversion method based on Rhino surface modeling accurately inverts the geostress distribution pattern of the Yingcheng coal mine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call