Abstract

Long-term sampling of intertidal macroalgae along permanently marked transects within San Francisco Bay has shown a marked decline in overall species number along the estuarine gradient from the ocean to the river, presumably as a result of decreasing salinity and a progressive lack of hard substrata in the upstream direction. Green algae penetrated further landward than either brown or red species. Seasonally, macroalgal species diversity is lowest during the winter-spring months when salinity, temperature, and irradiance are at yearly minima. Macroalgal abundance as measured by percent cover was maximum during the late spring near the mouth of the estuary and during late summer towards the head. The seasonal increase in algal abundance is related to increasing salinity, temperature, and light availability to the bottom. The summer increase in irradiance is due to the longer photoperiod, increased frequency of day-time low tides, and reduced levels of suspended sediments. The aperiodic occurrence of algal blooms in San Pablo Bay may be caused by a combination of physical factors which are ultimately associated with the river inflow. A hypothesis based on interannual differences in river inflow and the contribution of phytoplankton to nutrient cycles in the benthos is presented to explain the occurrence of nuisance algal blooms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.