Abstract
The present study describes the distribution and cellular morphology of catecholaminergic neurons in the CNS of two species of monotreme, the platypus (Ornithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). Tyrosine hydroxylase immunohistochemistry was used to visualize these neurons. The standard A1–A17, C1–C3 nomenclature was used for expediency, but the neuroanatomical names of the various nuclei have also been given. Monotremes exhibit catecholaminergic neurons in the diencephalon (A11, A12, A13, A14, A15), midbrain (A8, A9, A10), rostral rhombencephalon (A5, A6, A7), and medulla (A1, A2, C1, C2). The subdivisions of these neurons are in general agreement with those of other mammals, and indeed other amniotes. Apart from minor differences, those being a lack of A4, A3, and C3 groups, the catecholaminergic system of monotremes is very similar to that of other mammals. Catecholaminergic neurons outside these nuclei, such as those reported for other mammals, were not numerous with occasional cells observed in the striatum. It seems unlikely that differences in the sleep phenomenology of monotremes, as compared to other mammals, can be explained by these differences. The similarity of this system across mammalian and amniote species underlines the evolutionary conservatism of the catecholaminergic system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.