Abstract
The performance and stability of polymer electrolyte membrane fuel cells (PEMFCs) are directly affected by the distribution of water molecules inside the membrane. In this study, coherent anti-Stokes Raman scattering (CARS) spectroscopy was used to measure the distribution of water in a Nafion® membrane under transient conditions after increasing the current density. At the cathodic surface of the membrane, an overshoot in amount of water was observed as a result of the increase in the rate of water production and electro-osmosis, while at the other locations in the membrane was observed a gradual increase of water as a result of water transport. The calculation of the water diffusion coefficient during power generation was subsequently carried out, which was consistent with the results of the previous values obtained statically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.