Abstract

In this study the distribution of the cholinergic neurons was examined in relation to the compartmental organization of nucleus accumbens. This was accomplished by charting the location of the choline acetyltransferase-immunoreactive neurons and mapping their distribution in relation to cytoarchitectural features and the patterns of acetylcholinesterase activity and enkephalin immunoreactivity. Choline acetyltransferase-containing perikarya are inhomogeneously distributed in nucleus accumbens. Their density is lowest at the rostral pole and highest, caudomedially, at the septal pole. The cells form a compact, medial column and a diffuse, lateral zone and, moreover, there are distinct gradients in their distribution. The highest numbers of immunoreactive perikarya occur within the intensely immunostained zones of choline acetyltransferase-immunoreactive neuropil in ventral and ventromedial parts of the nucleus, whereas lower numbers coincide with choline acetyltransferase-poor zones in the central part of the nucleus. Zones of intensely choline acetyltransferase-immunoreactive neuropil are largely in register with regions of high acetylcholinesterase activity in middle and caudal parts of the nucleus but do not coincide rostrally. Choline acetyltransferase-rich zones correspond to moderate enkephalin immunoreactivity in the outer shell of the nucleus, but a moderately choline acetyltransferase-immunostained matrix surrounds “patches” of intense enkephalin immunoreactivity in the core. Small aggregates of cells, which feature commonly in nucleus accumbens, seem to be avoided by both choline acetyltransferase- and enkephalin-immunoreactive zones. Choline acetyltransferase-immunoreactive processes are mostly confined by the boundaries of their respective immunoreactive zones. Few choline acetyltransferase-immunoreactive neurons lie in the enkephalin-rich patches and those that lie close to the patches show little preference in the directionality of their processes such that some cross the borders, whereas others do not. Thus, our findings show that the cholinergic elements are differentially distributed within nucleus accumbens; that these elements are compartmentally ordered; and that, in light of their limited access to other compartments, they possibly play only a minor role in intercompartmental communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.