Abstract

The posterior ventrolateral thalamus (VLp) plays a crucial role in Parkinson's tremor and in essential tremor: deep brain stimulation (DBS) of the VLp effectively diminishes both tremor types. Previous research has shown tremor oscillations in the VLp, but the spatial extent and somatotopy of these oscillations remained unclear. In this issue of Experimental Neurology, Pedrosa and colleagues measured neuro-muscular coherence at multiple sites in the VLp of patients with essential tremor and Parkinson's disease using implanted DBS electrodes (Pedrosa et al., 2012). They found multiple tremor clusters within the VLp, with spatially distinct tremor clusters for antagonistic muscles, and in many patients also multiple distinct tremor clusters for a single muscle. Interestingly, this group previously showed similar effects for the STN in tremulous Parkinson's disease (Reck et al., 2009, 2010). Together, these studies suggest that the distribution of tremor clusters is a general organizational principle of tremor, being present in two different tremor pathologies, and in two different nodes of the motor system. The presence of multiple tremor clusters also fits with the distributed somatotopy of the healthy motor system. Therefore, a further conclusion of this study could be that tremor is caused by aberrant synchronization within an otherwise healthy network, brought about by different pathophysiological neural triggers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.