Abstract

Updating the most recent set of point cloud data is critical in autonomous driving environments. However, existing systems for point cloud data management often fail to ensure real-time updates or encounter situations in which data cannot be effectively refreshed. To address these challenges, this study proposes a distributed hybrid transactional/analytical processing architecture designed for the efficient management and real-time processing of point cloud data. The proposed architecture leverages both columnar and row-based tables, enabling it to handle the substantial workloads associated with its hybrid architecture. The construction of this architecture as a distributed database cluster ensures real-time online analytical process query performance through query parallelization. A dissimilarity analysis algorithm for point cloud data, built by utilizing the capabilities of the spatial database, updates the point cloud data for the relevant area whenever the online analytical process query results indicate high dissimilarity. This research contributes to ensuring real-time hybrid transactional/analytical processing workload processing in dynamic road environments, helping autonomous vehicles generate safe, optimized routes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.