Abstract
BackgroundBacterial cell division is an essential process driven by the formation of a Z-ring structure, as a cytoskeletal scaffold at the mid-cell, followed by the recruitment of various proteins which form the divisome. The cell division interactome reflects the complement of different interactions between all divisome proteins. To date, only two cell division interactomes have been characterized, in Escherichia coli and in Streptococcus pneumoniae. The cell divison proteins encoded by Neisseria gonorrhoeae include FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsI, FtsW, and FtsN. The purpose of the present study was to characterize the cell division interactome of N. gonorrhoeae using several different methods to identify protein-protein interactions. We also characterized the specific subdomains of FtsA implicated in interactions with FtsZ, FtsQ, FtsN and FtsW.ResultsUsing a combination of bacterial two-hybrid (B2H), glutathione S-transferase (GST) pull-down assays, and surface plasmon resonance (SPR), nine interactions were observed among the eight gonococcal cell division proteins tested. ZipA did not interact with any other cell division proteins. Comparisons of the N. gonorrhoeae cell division interactome with the published interactomes from E. coli and S. pneumoniae indicated that FtsA-FtsZ and FtsZ-FtsK interactions were common to all three species. FtsA-FtsW and FtsK-FtsN interactions were only present in N. gonorrhoeae. The 2A and 2B subdomains of FtsANg were involved in interactions with FtsQ, FtsZ, and FtsN, and the 2A subdomain was involved in interaction with FtsW.ConclusionsResults from this research indicate that N. gonorrhoeae has a distinctive cell division interactome as compared with other microorganisms.
Highlights
Bacterial cell division is an essential process driven by the formation of a Z-ring structure, as a cytoskeletal scaffold at the mid-cell, followed by the recruitment of various proteins which form the divisome
Identification of N. gonorrhoeae cell division protein interactions by bacterial two-hybrid assay Using Bacterial two-hybrid (B2H) assays, we investigated 28 potential interactions among eight gonococcal divisome proteins including FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsI, FtsW, and FtsN
glutathione S-transferase (GST) pull-down of FtsANg-FtsQNg, FtsANg-FtsZNg and FtsANg-FtsNNg interactions To confirm the results of selected B2H assays, we examined several interactions (i.e. FtsQNg-FtsANg, FtsANg-FtsNNg, FtsANg-FtsZNg) using GST pull-down assays
Summary
Bacterial cell division is an essential process driven by the formation of a Z-ring structure, as a cytoskeletal scaffold at the mid-cell, followed by the recruitment of various proteins which form the divisome. The cell divison proteins encoded by Neisseria gonorrhoeae include FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsI, FtsW, and FtsN. In Escherichia coli (Ec), normal cell division is driven by the formation of an FtsZ-ring at the division site [1], followed by the recruitment of other essential proteins, which together form the divisome [2]. E. coli encodes ten essential cell division proteins, including FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsB, FtsL, FtsW, FtsI, and FtsN [11, 12].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.