Abstract

PurposeMagnetic resonance (MR) imaging targeted prostate cancer (PCa) biopsy enables precise sampling of MR-detected lesions, establishing its importance in recommended clinical practice. Planning for the ultrasound-guided procedure involves pre-selecting needle sampling positions. However, performing this procedure is subject to a number of factors, including MR-to-ultrasound registration, intra-procedure patient movement and soft tissue motions. When a fixed pre-procedure planning is carried out without intra-procedure adaptation, these factors will lead to sampling errors which could cause false positives and false negatives. Reinforcement learning (RL) has been proposed for procedure plannings on similar applications such as this one, because intelligent agents can be trained for both pre-procedure and intra-procedure planning. However, it is not clear if RL is beneficial when it comes to addressing these intra-procedure errors.MethodsIn this work, we develop and compare imitation learning (IL), supervised by demonstrations of predefined sampling strategy, and RL approaches, under varying degrees of intra-procedure motion and registration error, to represent sources of targeting errors likely to occur in an intra-operative procedure.ResultsBased on results using imaging data from 567 PCa patients, we demonstrate the efficacy and value in adopting RL algorithms to provide intelligent intra-procedure action suggestions, compared to IL-based planning supervised by commonly adopted policies.ConclusionsThe improvement in biopsy sampling performance for intra-procedure planning has not been observed in experiments with only pre-procedure planning. These findings suggest a strong role for RL in future prospective studies which adopt intra-procedure planning. Our open source code implementation is available here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.