Abstract

The innate immune system is one of the major constituents of the host's defense against invading pathogens and extracellular vesicles (EVs) are involved in regulating its responses. Exosomes, a subclass of EVs, released from eukaryotic cells, contribute to intracellular communication and drive various biological processes by transferring nuclei acids, proteins, lipids, and carbohydrates between cells, protecting cargo from enzymatic degradation and immune recognition and consequent elimination by the immune system. A growing body of evidence has revealed that exosomes produced from host cells, infected cells, tumor cells, and immune cells regulate innate immune signaling and responses and thus play a significant role in the propagation of pathogens. Immune cells can recognize exosomes-bearing components including DNA strands, viral RNAs, and even proteins by various mechanisms such as through Toll-like receptor/NF-κB signaling, inducing cytokine production and reprogramming the innate immune responses, immunosuppression or immunesupportive. There is persuasive preclinical and clinical evidence that exosomes are therapeutic strategies for immunotherapy, cancer vaccine, drug-delivery system, and diagnostic biomarker. However, further scrutiny is essential to validate these findings. In this review, we describe the current facts on the regulation of innate immune responses by exosomes. We also describe the translational application of exosomes as cancer-therapy agents and immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.