Abstract

mRNA antigens require powerful nanocarriers for efficient delivery, as well as immunomodulators for controlling their excessive immunogenicity. While lipid nanoparticles (LNPs) used in mRNA vaccines exhibited systemic toxicity, there is an urgent need for developing potential nanoparticles with strong immunoenhancing effects for mRNA antigens. Although natural polysaccharides as adjuvants assisted various types of antigens in triggering potent immune responses, they have been rarely investigated in mRNA vaccines. Here, we constructed four polysaccharide nanoparticles with different molecular weights (MWs) to deliver and protect mRNA antigens, and boosted antigen cross-presentation, DC maturation, CD4+/CD8+T cell responses and humoral immune responses. Importantly, the immunoenhancing capacities of polysaccharide nanoparticles were highly dependent on their MW properties. CS NPs with high MW initiated stimulator of interferon genes (STING)-mediated autophagy and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome signaling, consequently possessing superior mRNA antigen-specific immune responses in vitro and in vivo. In contrast, CS NPs with low MWs induced NLRP3 signaling without STING or autophagy activation, which failed to induce robust immune responses. Therefore, it uncovered the MW-dependent immunoenhancing effects and mechanism of polysaccharide nanoparticles, providing a platform for designing potential nanosized polysaccharide immunomodulators for mRNA vaccines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.