Abstract

In a preceding paper, we have showed as swarm robotics displacement can be related to the deformation of a continuum material, discretized by a lattice network representing the swarm. To reach this aim, it is fundamental to know the swarm configuration, i.e., its shape; this can be computed from the knowledge of the relative distances between its elements and it is studied as a geometry distances problem. Typically, ultrasonic devices are employed to measure the distances. We propose a method based on light signal exchanged between the machines and the computing of the unknown water adsorption coefficient and distance. Aim of this paper is, therefore, to measure distances between underwater elements of the swarm using cheap power LEDs as light source and photodiode as receiver. The receiving photodiode produces a current we can correlate with distance and water adsorption coefficient; we can be able to estimate the two unknown parameters by moving the robots and stressing the emission conditions of the LED diode. Actual work is based on a previous paper where we stressed work conditions of a power LED in shallow water to change its emission characteristics; now, using these results, we can now perform a set of measurements leading to the knowledge of distances d and adsorption coefficient a(lambda ). The method we propose here can be a possible support to traditional ultrasonic devices

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.