Abstract

A new replaceable hysteretic damper to better control seismic building damage, consisting of two or more adjacent steel vertical elements connected to each other with continuous mild/low strength steel shear links, is proposed and investigated in this paper. New Dampers, called Dissipative Columns (DC), continuously linked with X-shaped steel plates, provide additional stiffness and damping to a lateral system by using a basic and minimally invasive construction element: the column. Working in a way similar to coupled shear walls, the proposed element behavior is theoretically analyzed at linear and non-linear ranges. In fact, considering different restrained cases, a parametric analysis is developed in order both to evaluate the effect of the main geometrical and structural parameters and to provide the design capacity curves of this new damper. The DC can be considered a new damping device, easy to install in new as well as existing buildings in order to protect them from seismic damage.

Highlights

  • Strong earthquakes have shown that a large percentage of buildings in the affected areas, even if properly built and designed according to the most advanced codes, suffer such severe damages that they need to be demolished after the quake, since they would be expensive to repair

  • The aim of this paper is to propose and investigate a new replaceable hysteretic damper having a basic form of the art of building, minimally architecturally invasive, consisting of two or more dissipative steel columns directly connected to two consecutive floors linked to each other with X-shaped low/mild steel plates

  • The responses of the Dissipative Columns (DC) elements have been analyzed by static pushover analyses using SAP2000 software [16]

Read more

Summary

Introduction

Strong earthquakes have shown that a large percentage of buildings in the affected areas, even if properly built and designed according to the most advanced codes, suffer such severe damages that they need to be demolished after the quake, since they would be expensive to repair. The acceptance of such level of damage due to severe earthquakes is related to the ductility-based design. Buildings 2015, 5 criteria that assume design seismic actions decrease by reduction factors. This approach may lead to high social and economic costs to the affected communities, and to a long recovery time for essential services and production activities. Inspired by new performance criteria, there is a growing belief that code design criteria are not sustainable for the high level of accepted damage, are impossible to repair, and that common buildings should be designed with a higher performance level. The “Direct Displacement Based Design” philosophy [2] relates the specified performance level to the strain or drift limits for a specified seismic intensity

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.