Abstract

Human experts constitute pattern classes of natural objects based on their observed appearance. Automatic systems for pattern recognition may be designed on a structural description derived from sensor observations. Alternatively, training sets of examples can be used in statistical learning procedures. They are most powerful for vectorial object representations. Unfortunately, structural descriptions do not match well with vectorial representations. Consequently it is difficult to combine the structural and statistical approaches to pattern recognition.Structural descriptions may be used to compare objects. This leads to a set of pairwise dissimilarities from which vectors can be derived for the purpose of statistical learning. The resulting dissimilarity representation bridges thereby the structural and statistical approaches.The dissimilarity space is one of the possible spaces resulting from this representation. It is very general and easy to implement. This paper gives a historical review and discusses the properties of the dissimilarity space approaches illustrated by a set of examples on real world datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.