Abstract

ABSTRACTVesicular trafficking is a fundamental cellular process involved in material transport in eukaryotes, but the diversity of the intracellular compartments has prevented researchers from obtaining a clear understanding of the specific functions of vesicular trafficking factors, including SNAREs, tethers, and Rab GTPases, in Apicomplexa. In this study, we analyzed the localization of SNAREs and investigated their roles in vesicular trafficking in Toxoplasma gondii. Our results revealed the specific localizations of SNAREs in the endoplasmic reticulum (ER) (T. gondii Stx18 [TgStx18] and TgStx19), Golgi stacks (TgGS27), and endosome-like compartment (TgStx10 and TgStx12). The conditional ablation of ER- and Golgi-residing SNAREs caused severe defects in the secretory system. Most importantly, we found an R-SNARE (TgVAMP4-2) that is targeted to the apicoplast; to our knowledge, this work provides the first information showing a SNARE protein on endosymbiotic organelles and functioning in vesicular trafficking in eukaryotes. Conditional knockout of TgVAMP4-2 blocked the entrance of TgCPN60, TgACP, TgATrx2, and TgATrx1 into the apicoplast and interfered with the targeting of TgAPT1 and TgFtsH1 to the outermost membrane of the apicoplast. Together, our findings revealed the functions of SNAREs in the secretory system and the transport of nucleus-encoded proteins to an endosymbiotic organelle in a model organism of Apicomplexa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call