Abstract

BackgroundPhytophthora capsici root rot (PRR) is a disastrous disease in peppers (Capsicum spp.) caused by soilborne oomycete with typical symptoms of necrosis and constriction at the basal stem and consequent plant wilting. Most studies on the QTL mapping of P. capsici resistance suggested a consensus broad-spectrum QTL on chromosome 5 named Pc.5.1 regardless of P. capsici isolates and resistant resources. In addition, all these reports proposed NBS-ARC domain genes as candidate genes controlling resistance.ResultsWe screened out 10 PRR-resistant resources from 160 Capsicum germplasm and inspected the response of locus Pc.5.1 and NBS-ARC genes during P. capsici infection by comparing the root transcriptomes of resistant pepper 305R and susceptible pepper 372S. To dissect the structure of Pc.5.1, we anchored genetic markers onto pepper genomic sequence and made an extended Pc5.1 (Ext-Pc5.1) located at 8.35 Mb–38.13 Mb on chromosome 5 which covered all Pc5.1 reported in publications. A total of 571 NBS-ARC genes were mined from the genome of pepper CM334 and 34 genes were significantly affected by P. capsici infection in either 305R or 372S. Only 5 inducible NBS-ARC genes had LRR domains and none of them was positioned at Ext-Pc5.1. Ext-Pc5.1 did show strong response to P. capsici infection and there were a total of 44 differentially expressed genes (DEGs), but no candidate genes proposed by previous publications was included. Snakin-1 (SN1), a well-known antimicrobial peptide gene located at Pc5.1, was significantly decreased in 372S but not in 305R. Moreover, there was an impressive upregulation of sugar pathway genes in 305R, which was confirmed by metabolite analysis of roots. The biological processes of histone methylation, histone phosphorylation, DNA methylation, and nucleosome assembly were strongly activated in 305R but not in 372S, indicating an epigenetic-related defense mechanism.ConclusionsThose NBS-ARC genes that were suggested to contribute to Pc5.1 in previous publications did not show any significant response in P. capsici infection and there were no significant differences of these genes in transcription levels between 305R and 372S. Other pathogen defense-related genes like SN1 might account for Pc5.1. Our study also proposed the important role of sugar and epigenetic regulation in the defense against P. capsici.

Highlights

  • Phytophthora capsici root rot (PRR) is a disastrous disease in peppers (Capsicum spp.) caused by soilborne oomycete with typical symptoms of necrosis and constriction at the basal stem and consequent plant wilting

  • We found many interesting Differentially expressed gene (DEG) responding to P. capsici in 305R, e.g., Histone, ATP-dependent DNA helicase, Chromatin structure-remodeling complex protein, Nucleotide binding site (NBS)-Leucine rich repeat (LRR) and Pentatricopeptide repeat-containing protein that may generate phasiRNAs in dicots [30]

  • Primary metabolites of infected root were detected by GC-MS and sugars were greatly upregulated by P. capsica infection in 305R but not in 372S.We dissect the response of Ext-Pc5.1 and resistance genes (R genes) in P. capsici infection in transcriptome analysis

Read more

Summary

Introduction

Phytophthora capsici root rot (PRR) is a disastrous disease in peppers (Capsicum spp.) caused by soilborne oomycete with typical symptoms of necrosis and constriction at the basal stem and consequent plant wilting. Most studies on the QTL mapping of P. capsici resistance suggested a consensus broad-spectrum QTL on chromosome 5 named Pc.5.1 regardless of P. capsici isolates and resistant resources. All these reports proposed NBS-ARC domain genes as candidate genes controlling resistance. P. capsici root rot (PRR) is a devastating pepper disease with typical symptoms of necrosis and constriction at the basal stem and consequent plant wilting. A resistance genetic source PI201234 was first found in pepper [2]. It is still important to explore more genetic resources of P. capsici resistance

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call