Abstract

ObjectivePediatric bipolar disorder (PBD) is a psychiatric disorder marked by alteration of brain networks. However, the understanding of these alterations in topological organization still unclear. This study aims to leverage the functional connectome gradient to examine changes in functional network hierarchy in PBD. MethodConnectome gradients were used to scrutinize the differences between functional gradient map in PBD patients (n = 68, aged 11 to 18) and healthy controls (HC, n = 37, aged 11 to 18). The association between regional altered gradient scores and clinical factors was examined. We further used Neurosynth to determine the correlation of the cognitive terms with the PBD principal gradient changes. ResultsGlobal topographic alterations were exhibited in the connectome gradient in PBD patients, involving gradient variance, explanation ratio, gradient range, and gradient dispersion in the principal gradient. Regionally, PBD patients revealed that the default mode network (DMN) held the most majority of the brain areas with higher gradient scores, whereas a higher proportion of brain regions with lower gradient scores in the sensorimotor network (SMN). These regional gradient differences exhibited significant correlation with clinical features and meta-analysis terms including cognitive behavior and sensory processing. ConclusionFunctional connectome gradient presents a thorough investigation of large-scale networks hierarchy in PBD patients. This exhibited excessive segregation between DMN and SMN supports the theory of imbalance in top-down control and bottom-up in PBD and provides a possible biomarker for diagnostic assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call