Abstract

This Paper examines the axisyrnmetric problem of a rigid circular foundation, resting on an isotropic elastic half-space which is subjected, simultaneously, to an external load and an internal anchor load. The anchor load consists of constant, linear or parabolic distributions of Mindlin forces of finite length, located along the axis of symmetry. A Mindlin force is defined as a concentrated force which acts at an interior point of the half-space along the axis of symmetry. The solution for the rigid displacement experienced by the circular plate is obtained in an exact closed form. This particular problem is of interest in connection with the study of rock anchors and in the examination of in situ tests such as the cable method of in situ testing. Cet article examine en axisymétric le cas d'une fondation circulaire rigide reposant sur un semi-espace élastique isotrope, soumise simultanément à un effort externe et à un effort d'ancrage interne. L'effort d'ancrage se compose des forces de Mindlin de longueur finie, sitées le long de l'axe de symétrie et dont la répartition est constante, linéaire ou parabolique. Une force Mindlin se définit comme étant une force concentrée agissant en un point interne du semi-espace le long de l'axe de symétrie. On traite le déplacement rigide de la plaque circulaire grâce à l'emploi d'une forme exacte fermée. Ce problème spécifique présente un intérêt pour l'étude des ancrages en terrain rocheux et l'analyse d'essais in situ tels que l'essai utilisant la méthode par câble.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.