Abstract

AbstractKaolinite is a common gangue mineral in iron ore and sodium silicate has been used widely as a dispersant of silicate gangue minerals including kaolinite in various iron-ore flotation methods over a wide range of pH. Its actual dispersive effect on kaolinite under iron-ore flotation conditions has received very limited attention, however. The presence of hydrolyzable metal cations in process water further complicates sodium silicate—kaolinite interactions. In the present study, the dispersive effect of sodium silicate on kaolinite particles in distilled water as well as in CaCl2 and MgCl2 solutions was investigated systematically through electrophoretic mobility and colloid-stability studies. The studies were based on controlled pH, which eliminated the dispersive effect of sodium silicate induced by increasingpulp pH, in order to simulate the conditions of iron-ore processing. With pH controlled at constant levels, sodium silicate dispersed kaolinite only when positively charged sites were present on kaolinite surfaces and the zeta potential of kaolinite was more negative than ~−30 mV. Over the pH range from 5 to 10.5, a significant dispersive effect of sodium silicate was only observed at pH 7. In process water, when Ca and Mgwere present, the strong coagulation of kaolinite particles caused by the hydrolyzable metal cations could not be dispersed effectively with sodium silicate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.