Abstract

AbstractThe effects of velocity distribution functions (VDFs) that exhibit a power law dependence on the high‐energy tail have been the subject of intense research by the space plasma community. Such functions, known as superthermal or kappa distributions, have been found to provide a better fitting to the VDF measured by several spacecraft in the plasma environment of the solar wind. In the literature, the general treatment for waves excited by (bi‐)Maxwellian plasmas is well established. However, for kappa distributions, either isotropic or anisotropic, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation. Contributions for the general case of obliquely propagating waves have been scarcely reported so far. In this work we introduce a mathematical formalism that provides expressions for the dielectric tensor components and subsequent dispersion relations for oblique propagating dispersive Alfvén waves (DAWs) resulting from a kappa VDF. We employ an isotropic distribution, but the methods used here can be easily applied to more general anisotropic distributions, such as the bi‐kappa or product‐bi‐kappa. The effect of the kappa index and thermal corrections on the dispersion relations of DAW is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.