Abstract

By using the linear field theory, the dispersion relation of electromagnetic waves in a rippled-wall waveguide with a plasma rod and an annular dielectric is obtained. In addition, by injecting a finite thick annular intense relativistic electron beam in this waveguide, the excitation of these waves is investigated. Furthermore, the effects of the radius of the plasma rod, the radius of the dielectric, the corrugation amplitude, and period on the frequency spectrum are investigated. Besides, the time growth rate of excitation of these waves by an annular relativistic electron beam is studied. Finally, to demonstrate the advantages of this rippled-wall waveguide, the dispersion relation and the growth rate of three simplified cases are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call