Abstract

A method for calculating the dispersion energy between molecules modeled with the general effective fragment potential (EFP2) method and those modeled using a full quantum mechanics (QM) method, e.g., Hartree-Fock (HF) or second-order perturbation theory, is presented. C(6) dispersion coefficients are calculated for pairs of orbitals using dynamic polarizabilities from the EFP2 portion, and dipole integrals and orbital energies from the QM portion of the system. Dividing by the sixth power of the distance between localized molecular orbital centroids yields the first term in the commonly employed London series expansion. A C(8) term is estimated from the C(6) term to achieve closer agreement with symmetry adapted perturbation theory values. Two damping functions for the dispersion energy are evaluated. By using terms that are already computed during an ordinary HF or EFP2 calculation, the new method enables accurate and extremely rapid evaluation of the dispersion interaction between EFP2 and QM molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call