Abstract
The dispersion characteristics of binary 1D-PPCs having inhomogeneous plasma in the unit cell are studied. Using the transfer matrix method the required dispersion relations are obtained. Here the linear and exponential plasma density profiles are considered and compared with the homogeneous plasma having uniform density profile. It is observed that the inhomogeneity in plasma layer highly affect dispersion curves. By comparing the dispersion curves obtained in all considered cases, it is found that the widths of band gaps and phase velocities are always larger for exponential density profile than the linear uniform density profiles in the considered frequency range.
Highlights
Photonic crystals (PCs) are periodically structured electromagnetic media in which certain range of electromagnetic (EM) waves are not allowed to propagate through the structure
The dispersion and propagation characteristics of ternary 1D-plasma photonic crystals (PPCs) have been studied by Prasad et al [7,8] and they found that the ternary 1D-PPCs provide additional degree of freedom to control the dispersion and propagation characteristics compared to binary 1D-PPCs
Most of the researchers have analyzed the dispersion characteristics, modal propagation characteristics, reflection and transmission coefficients of 1D-PPCs in which a unit cell consists of homogeneous plasma and homogeneous dielectric materials and they obtained that these properties are being controlled by plasma density, thickness of plasma layers, collisions in plasma layer, dielectric constant of dielectric materials and external magnetic fields [9,10]
Summary
Photonic crystals (PCs) are periodically structured electromagnetic media in which certain range of electromagnetic (EM) waves are not allowed to propagate through the structure. The dispersion and propagation characteristics of ternary 1D-PPCs have been studied by Prasad et al [7,8] and they found that the ternary 1D-PPCs provide additional degree of freedom to control the dispersion and propagation characteristics compared to binary 1D-PPCs. But most of the researchers have analyzed the dispersion characteristics, modal propagation characteristics, reflection and transmission coefficients of 1D-PPCs in which a unit cell consists of homogeneous plasma and homogeneous dielectric materials and they obtained that these properties are being controlled by plasma density, thickness of plasma layers, collisions in plasma layer, dielectric constant of dielectric materials and external magnetic fields [9,10].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.